

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : CO (16MC802) Course & Branch: MCA

Regulation: R16 Year & Sem: I-MCA & I-Sem

<u>UNIT-I</u>

Number Systems and Computer Arithmatic

1.	a. Explain number base conversions with suitable examples.	[5M]
	b. Explain the flip-flops in detail.	[5M]
2.	Describe the following	
	a. Gray code	[3M]
	b. BCD code	[4M]
	c. Ex-3 code	[3M]
3.	a. How to simplify the Boolean expressions explains with suitable examples.	[5M]
	b. Explain combinational circuits.	[5M]
4.	a. Explain sequential circuits.	[5M]
	b. Describe K-maps with don't care conditions	[5M]
5.	Briefly explain the following.	
	a. Decoders	[4M]
	b. Multiplexers	[4M]
	c. Error detecting codes.	[2M]
6.	a. Explain adders briefly	[5M]
	b. Describe binary multiplication with suitable examples	[5M]
7.	a. Describe the importance of encoders	[5M]
	b. Describe floating point representation	[5M]
8.	a. What is BCD code write the conversion steps of BCD to binary code?	[6M]
	b. Explain logical operations	[4M]
9.	a. Explain JK flip-flop and Tigger flip-flop.	[5M]
	b. Explain logical gates with their circuit diagrams.	[5M]
10.	a. Explain octal to binary conversions with suitable example.	[5M]
	b. Describe full adder and its circuit diagram.	[5M]

<u>UNIT-II</u>

Memory Organization and Micro Programmed Control

1.	a. Explain the Memory Hierarchy in detail.	[5M]
	b. Describe Cache Memory and its futures.	[5M]
2.	a. What is Main Memory and explain it advantages.	[5M]
	b. Explain ROM Chip with neat diagram.	[5M]
3.	a. Explain Memory Address Map in detail.	[5M]
	b. What is associative mapping?	[5M]
4.	a. Explain ROM and RAM.	[5M]
	b. Describe the importance of direct mapping.	[5M]
5.	a. Describe Memory contention to CPU.	[5M]
	b. Explain set-associate mapping.	[5M]
6.	a. Describe the virtual Memory	[5M]
	b. Explain how to control memory.	[5M]
7.	a. Explain address sequencing.	[5M]
	b. Describe the design of control unit	[5M]
8.	a. What is hard wired control and explain it?	[5M]
	b. Briefly explain memory organization	[5M]
9.	a. What is Micro programming explain with suitable examples?	[6M]
	b. Differentiate between cache memory and virtual memory.	[4M]
10.	. a. Briefly explain the micro programmed control.	[6M]
	h Explain Auxiliary memory	[4M]

UNIT-III

Basic CPU Organization 8086 Assembly Language Instructions

1.	a. Explain Basic CPU Organization.	[3141]
	b. Describe assembler directives.	[5M]
2.	a. Design Intel-8086 CPU architecture.	[5M]
	b. Explain zero instruction formats.	[5M]
3.	a. Explain different types of address instructions.	[5M]
	b. Describe code segment registers?	[5M]
4.	a. Explain Intel 8086 assembler.	[6M]
	b. Describe the addressing modes.	[4M]
5.	a. Explain the generation of physical address.	[5M]
	b. Describe the importance of address instructions.	[5M]
6.	a. Describe data transfer instructions	[5M]
	b. Explain shift and rotate instructions.	[5M]
7.	a. What is address transfer and explain it clearly?	[7M]
	b. Describe the Flag transfer.	[3M]
8.	a. Explain arithmetic and logical instructions?	[5M]
	b. Describe conditional and unconditional transfer.	[5M]
9.	a. Describe interrupts and its control instructions?	[5M]
	b. Explain assembly language instructions.	[5M]
10.	. a. What is process and process control instructions?	[4M]
	b. Explain Programming with assembly language instructions.	[6M]

UNIT-IV

Input Output Organization

1.	a. Explain the importance of peripheral devices.	[5M]
	b. Describe assembler directives.	[5M]
2.	a. Describe the input- output interface.	[5M]
	b. What is I/O bus explain them?	[5M]
3.	a. Describe I/O versus memory bus.	[5M]
	b. Explain I/O bus and interface modules?	[5M]
4.	a. What is interrupt and explain with suitable example?	[5M]
	b. Describe the isolated versus memory.	[5M]
5.	a. Describe I/P organization.	[5M]
	b. Explain programmed I/O.	[5M]
6.	a. Explain interrupt initiated I/O.	[5M]
	b. What is DMA and explain it.	[5M]
7.	a. Explain priority interrupts daisy chaining methods.	[6M]
	b. How the DMA controller works?	[4M]
8.	a. Describe interrupt cycle?	[5M]
	b. Explain DMA transfer.	[5M]
9.	a. Explain I/O processor?	[5M]
	b. Describe the parallel priority.	[5M]
10.	. a. Describe the IOP communication?	[5M]
	b. Explain what DMA-DMA control is?	[5M]

<u>UNIT-V</u>

Pipeline and Vector Processing, Multi Processor

1.	a. What is parallel processing?	[5M]
	b. Explain RISC pipeline.	[5M]
2.	a. Describe pipelining.	[5M]
	b. Explain the Characteristics of multi-processor.	[5M]
3.	a. What is arithmetic pipeline and explain it clearly?	[5M]
	b. Explain Interconnection structures?	[5M]
4.	a. Describe Instruction pipeline.	[5M]
	b. What is Inter processor arbitration?	[5M]
5.	a. Explain inter processor communication.	[5M]
	b. Describe the vector processing.	[5M]
6.	a. Explain the importance of multiprocessor.	[5M]
	b. What is pipeline processing?	[5M]
7.	a. Describe the inter connection structures.	[5M]
	b. Explain array processors.	[5M]
8.	a. What is synchronization explain it clearly?	[5M]
	b. Differentiate instruction RISC pipeline.	[5M]
9.	a. Explain cache coherence?	[5M]
	b. Describe the importance of vector processing.	[5M]
10. a. Explain shared memory multiprocessors?		[5M]
	b. Describe the inter processor communication.	[5M]

Prepared by A Swaruparani, Associate Professor, Department of MCA